Midterm 1 - Review - Problems

Peyam Ryan Tabrizian

Tuesday, September 12th, 2011

1 Linear equations

Problem 1:

Solve the following system (or say it has no solutions):

$$\begin{cases} x + 2y - z = 2\\ x + 2y - 2z = 0\\ 2x + 4y - 2z = 1 \end{cases}$$

Problem 2

Use the following LU factorization of A to solve the equation $A\mathbf{x} = \mathbf{b}$:

$$A = \begin{bmatrix} 1 & 3\\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3\\ 0 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1\\ 0 \end{bmatrix}$$

2 Matrix products and inverses

Problem 3

Calculate AB (or say it's undefined), where:

(a)
$$A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Problem 4

Find the inverse of the following matrix:

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Problem 5

Does the inverse of the following matrix exist?

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Hint: This is a one-liner!

3 Linear Transformations

Problem 6

Assume $T : \mathbb{R}^3 \to \mathbb{R}^3$ maps $\mathbf{e_1}$ to $\begin{bmatrix} 2\\1\\0 \end{bmatrix}$, $\mathbf{e_2}$ to $\begin{bmatrix} 3\\-1\\0 \end{bmatrix}$ and $\mathbf{e_3}$ to $\begin{bmatrix} 5\\4\\0 \end{bmatrix}$. Find the matrix of T.

Problem 7

Assume $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates points in the plane by $\frac{3\pi}{2}$ radians. Find the matrix of T.

4 Nul(A), Col(A), Linear dependence, Span

Problem 8

- (a) For the following matrix A, find a basis for Nul(A), Col(A).
- (b) Are the columns of A linearly independent? Do they span \mathbb{R}^4 ?

	3	$^{-1}$	$\overline{7}$	3	9		3	-1	7	0	6
A =	-2	2	-2	7	6	\sim	0	2	4	0	3
	-5	9	3	3	4		0	0	0	1	1
	$\lfloor -2 \rfloor$	6	6	3	7		0	0	0	0	0

5 True/False Extravaganza

Problem 9

- (a) If A is a 3×2 matrix, then $A\mathbf{x} = \mathbf{0}$ always has a nontrivial solution.
- (b) If $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation that is also onto, then the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} .
- (c) If AB = I, then A is invertible
- (d) If A and B are 2×2 matrices such that $A \neq O$ and $B \neq 0$, then $AB \neq O$ (where O is the zero matrix)
- (e) If A is $n \times n$ and has n pivot rows, then the columns of A span \mathbb{R}^n
- (f) If A is invertible, then $Nul(A) = \{0\}$
- (g) If $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ are in \mathbb{R}^4 and $\mathbf{v_3} = 2\mathbf{v_1} + \mathbf{v_2}$, then $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is linearly dependent.
- (h) If $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}$ are in \mathbb{R}^4 and $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is linearly dependent, then $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}\}$ is linearly dependent.