# Midterm 1 - Review - Problems 

Peyam Ryan Tabrizian

Tuesday, September 12th, 2011

## 1 Linear equations

## Problem 1:

Solve the following system (or say it has no solutions):

$$
\left\{\begin{array}{c}
x+2 y-z=2 \\
x+2 y-2 z=0 \\
2 x+4 y-2 z=1
\end{array}\right.
$$

## Problem 2

Use the following $L U$ factorization of $A$ to solve the equation $A \mathbf{x}=\mathbf{b}$ :

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

## 2 Matrix products and inverses

## Problem 3

Calculate $A B$ (or say it's undefined), where:
(a) $A=\left[\begin{array}{l}1 \\ 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

## Problem 4

Find the inverse of the following matrix:

$$
A=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

## Problem 5

Does the inverse of the following matrix exist?

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Hint: This is a one-liner!

## 3 Linear Transformations

## Problem 6

Assume $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ maps $\mathbf{e}_{\mathbf{1}}$ to $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right], \mathbf{e}_{\mathbf{2}}$ to $\left[\begin{array}{c}3 \\ -1 \\ 0\end{array}\right]$ and $\mathbf{e}_{\mathbf{3}}$ to $\left[\begin{array}{l}5 \\ 4 \\ 0\end{array}\right]$. Find the matrix of $T$.

## Problem 7

Assume $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates points in the plane by $\frac{3 \pi}{2}$ radians. Find the matrix of $T$.

## $4 \operatorname{Nul}(A), \operatorname{Col}(A)$, Linear dependence, Span

## Problem 8

(a) For the following matrix $A$, find a basis for $\operatorname{Nul}(A), \operatorname{Col}(A)$.
(b) Are the columns of $A$ linearly independent? Do they span $\mathbb{R}^{4}$ ?

$$
A=\left[\begin{array}{ccccc}
3 & -1 & 7 & 3 & 9 \\
-2 & 2 & -2 & 7 & 6 \\
-5 & 9 & 3 & 3 & 4 \\
-2 & 6 & 6 & 3 & 7
\end{array}\right] \sim\left[\begin{array}{ccccc}
3 & -1 & 7 & 0 & 6 \\
0 & 2 & 4 & 0 & 3 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

## 5 True/False Extravaganza

## Problem 9

(a) If $A$ is a $3 \times 2$ matrix, then $A \mathbf{x}=\mathbf{0}$ always has a nontrivial solution.
(b) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation that is also onto, then the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every $\mathbf{b}$.
(c) If $A B=I$, then $A$ is invertible
(d) If $A$ and $B$ are $2 \times 2$ matrices such that $A \neq O$ and $B \neq 0$, then $A B \neq O$ (where $O$ is the zero matrix)
(e) If $A$ is $n \times n$ and has $n$ pivot rows, then the columns of $A$ span $\mathbb{R}^{n}$
(f) If $A$ is invertible, then $\operatorname{Nul}(A)=\{\mathbf{0}\}$
(g) If $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ are in $\mathbb{R}^{4}$ and $\mathbf{v}_{\mathbf{3}}=2 \mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}$, then $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is linearly dependent.
(h) If $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}$ are in $\mathbb{R}^{4}$ and $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is linearly dependent, then $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}\right\}$ is linearly dependent.

